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ABSTRACT 

This work focusesed on the mathematical foundations of nonlinear systems analysis and 
feedback control. It addressed the continuing development of systems analysis tools based on 
input to state stability and related notions of detectability, regulation, and stabilization, as 
well as the study of new theoretical questions arising from the study of biomolecular cellular 
mechanisms, seen as a source of inspiration for novel sensor, actuation, and control architectures. 
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1    Overview 

This research addresses the mathematical foundations of nonlinear systems analysis and feedback 
control. Nonlinear control theory is of central importance to the Air Force mission, and the 
study of the associated mathematical theory is of undisputed relevance. The control of highly 
nonlinear systems broadly impacts appHcations ranging from robust feedback controllers for 
advanced high-performance aircraft, and reconfigurable flight control systems, to the design of 
autonomous aerial vehicles and of smart-munitions guidance systems. 

The design and analysis of nonUnear feedback systems has recently undergone an excep- 
tionally rich period of progress and maturation, fueled, to a great extent, by (1) the discovery 
of certain basic conceptual notions, and (2) the identification of classes of systems for which 
systematic decomposition approaches can result in effective and easily computable control laws. 
These two aspects are complementary, since the latter approaches are, typically, based upon the 
inductive verification of the vahdity of the former system properties under compositions (the 
"activation" of theoretical concepts leads to "constructive" control). It is perhaps in the first 
of these aspects, and in particular in the precise formulation of questions of robustness with 
respect to disturbances, and of stabilization conditions, formulated in the paradigm of input to 
state stability, that the Pi's previous work has had the most influence, although our research 
covers a wide spectrum of other subjects as well. A large part of the project deals with such 
issues. 

One relatively recent direction of the Pi's research is the study of biological, and in par- 
ticular intra-cellular, control and signal processing mechanisms. As a theoretician, the PI is 
particularly interested in new mathematical questions in systems and control theory that arise 
when analyzing molecular biology models. Evolution has resulted in robust, highly nonlinear, 
and hybrid feedback systems. Recent advances in genomic research are continuously adding 
detailed knowledge of such systems' architecture and operation, and one may reasonably argue 
that they will constitute a rich source of inspiration for innovative solutions to problems of 
control and communication engineering, as well as sensor and actuator design and integration. 
Thus, another major component of this project deals with problems of biological control. 

The emphasis of this project is on the development of basic principles, and on the com- 
munication of these results to those in the engineering community (including especially other 
AFOSR researchers) who, in turn, employ these techniques in applications. 

1.1    Input to State Stability and Related Notions 

We discuss general finite-dimensional systems x{t) = f{x{t),u{t)), y{t) = h{x{t)), in the sense 
of nonlinear control under standard regularity assumptions (see Section 2.1 for more details). 
There are two conceptually very different ways to formulate the notion of stability of such 
systems. 

One of them, the purely input/output approach, relies on operator-theoretic techniques. 
Among the main contributions to this area, one may cite the foundational work by Zames, 
Sandberg, Desoer, Safanov, Vidyasagar, and others. In this approach, a "system" is a causal 
operator F = F^^o) '■ "(•) -^ J/(") between spaces of signals (for fixed initial states), and "stabil- 
ity" is taken to mean that F maps bounded inputs into bounded outputs, or finite-energy inputs 
into finite-energy outputs. More stringent typical requirements in this context are that the gain 
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of F be finite (in more classical mathematical terms, that the operator be bounded), or that it 
have finite incremental gain (mathematically, that it be globally Lipschitz). The input/output 
approach has been extremely successful in the robustness analysis of linear systems subject to 
nonlinear feedback and mild nonlinear uncertainties, and in general in the area that revolves 
around the various versions of the small-gain theorem. Moreover, geometric characterizations 
of robustness (gap metric and the like) are elegantly carried out in this framework. Finally, i/o 
stability provides a natural setting in which to study the classification and parameterization of 
dynamic controllers. 

On the other hand, there is the model-based, or state-space approach to systems and sta- 
bility. In this approach, there is a standard notion of stability, namely Lyapunov asymptotic 
stability of the unforced system. Associated to such a system, there is the above-mentioned 
operator F mapping inputs (forcing functions) into state trajectories (or into outputs, if par- 
tial measurements on states are of interest). It becomes of interest then to ask to what extent 
Lyapunov-like stability notions for a state-space system are related to the stability, in the senses 
discussed in the previous paragraph, of the associated operator F. It is well-known that, in con- 
trast to the case of (finite-dimensional) linear systems, where there is -subject to mild technical 
assumptions- an equivalence between state-space and i/o stability, for nonhnear systems the 
two types of properties are not so closely related. Even for the very special and comparatively 
simple case of "feedback linearizable" systems, this relation is far more subtle than it might 
appear at first sight: if one first linearizes a system and then stabilizes the equivalent lineariza- 
tion, in terms of the original system one does not in general obtain a closed-loop system that 
is input/output stable in any reasonable sense. 

This leads one to focus on the study of the dependence of state trajectories on the size of 
inputs, a study which is especially relevant when the inputs in question represent disturbances 
acting on a system. For not necessarily linear systems, there are various possible formulations of 
system stability with respect to input perturbations. (For linear systems, similar considerations 
led to the development of gains and the operator-theoretic approach, including the formulation, 
when using L^ norms, of H°° control.) One candidate for such a formulation is the property 
called "input to state stability" (ISS), introduced by the PI in 1989. In very informal terms, the 
ISS property translates into the statement that "no matter what is the initial state, if the inputs 
are small, then the state must eventually be small, and the overshoot depends on the size of the 
initial state." The ISS notion can be stated in several equivalent manners, which indicates that 
it is a mathematically natural concept: dissipation, robustness margins, or asymptotic gains. 

The three most basic notions of stability in the theory of finite-dimensional linear systems 
are (1) internal stability (behavior of states), (2) detectability (external behavior determines 
how states evolve), and (3) input/output stability (transfer function has no poles in the right- 
hand plane). These generalize, respectively, to (1) ISS, (2) lOSS (input and output to state 
stability), and (3) lOS (input to output stability), for general finite-dimensional nonhnear 
systems. The observation that a system is internally stable if and only if it is i/o stable and 
detectable generalizes to "ISS equals lOSS and lOS" in an immediate fashion, providing a 
conceptual tmity to the field. 

Input to state stability proved to be a very useful paradigm in the study of nonhnear stability 
for systems subject to external effects, especially in connection to issues of robust and adaptive 
control, stochastic and hybrid versions, or in its variants for detectability and output stability 
(loss, lOS) and for integral stability (iISS). 
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The ISS approach differs fundamentally from the operator-theoretic ones, first of all because 
it takes account of initial states in a manner fully compatible with Lyapunov stability. Second, 
boundedness (finite gain) is far too strong a requirement for general nonlinear operators, and 
it must be replaced by "nonlinear gain estimates," in which the norms of output signals are 
bounded by a nonhnear function of the norms of inputs; the definition of ISS incorporates 
such gains in a natural way. Yet another way in which the approach differs from operator- 
theoretic quantifications of stability is that one does not focus upon the actual numerical values 
of gains (operator norms) but, rather, on the more qualitative question of existence of estimates; 
for (finite-dimensional) linear systems, of course, all these questions are equivalent, and they 
amount to the requirement that the origin should be asymptotically stable with respect to the 
unforced dynamics, but not so for general nonlinear systems. One may say that the ISS view 
is "topological" in contrast to the more "metric" view of standard operator approaches. 

Recent Accomplishments 

Next, we highlight next some of our recent accomplishments in the ISS area; some more details 
on several of these items are provided in Section 2.1. 

We were able to complete the dissipation characterizations of input to output stability (lOS), 
of input-output to state stability, and of the integral ISS (iISS) property and its semi-global 
versions. ([s63],[s64],[s52]). Asjonptotic-gain equivalences were found for lOS, cf. [s75], and 
loss, cf. [s74]; see [sl6] for the most general results along these lines. 

Proving these asymptotic characterizations requires the generalization of the Filippov- 
Wazewski Relaxation Theorem to infinite time intervals, a result which is of independent interest 
in the field of diflFerential inclusions, see [s35] for the finite-dimensional case and [s56] for the 
corresponding theorem in Banach spaces. This led, in turn, to a new theorem showing that, 
for locally Lipschitz diflFerential inclusions, uniform and non-uniform global asymptotic stability 
are equivalent, cf. [s4]. 

In applications such as adaptive control, often suitable tracking behavior is obtained only 
under assumptions of slow variation of inputs; this gave rise to the study of ISS with respect to 
input derivatives; the papers [s68], [s43] describe relations and differences with the ISS notion, 
and applications. 

Measurement to error stability (MES) is a notion of partial detectability for nonlinear sys- 
tems, which unifies the many concepts associated to ISS and which plays a key role in regulator 
theory. This notion is still poorly understood, but some progress was reported in [s58]. 

For nonlinear cascade systems resulting firom input-output linearization, strong assumptions 
have to be made in order to obtain stability, typically that the driven system is ISS. The 
papers [s73], [s55] dealt with the case when the driven subsystem is merely integral ISS, and 
characterized the admissible integral ISS gains for stability. The result was used to develop 
a new observer-based backstepping design under suitable growth assumptions on nonlinear 
damping terms. 

The papers [s67], [s50] introduced and studied the notion of output-input stability (OIS), 
which was motivated by and relates to the minimum-phase property. The definition requires 
the state and input to be bounded by a suitable function of the output and derivatives of the 
output, modulo a decaying term depending on initial conditions, and includes affine systems in 
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global normal form whose internal dynamics are ISS. An extension to nonlinear systems of a 
basic result from linear adaptive control, using this notion, was shown there as well. 

A very abstract and formal ISS-like small gain theorem, in a form applicable to incremental 
stability, detectability, and input/output maps (possibly nonrealizable by finite-dimensional 
systems) was given in [s49]. 

In [s40], we gave an example of a globally asymptotically stable time-invariant system 
which can be destabilized by some integrable perturbation; this answered (in the negative) an 
open problem posed by Laurent Praly concerning the existence of continuously differentiable 
Lyapunov functions with globally bounded gradients. 

The paper [s51] dealt with the design of state feedback control laws that render a closed-loop 
system iISS with respect to disturbances, using an appropriate concept of control Lyapunov 
function (ilSS-CLF), whose existence is shown to lead to an explicit construction of such a 
control law. 

In [s38], [Sl4], we returned to a question first addressed in our original ISS paper in 1989. For 
systems admitting a continuous stabilizer, we had shown that it is always possible to "robustify" 
the given control law so as to obtain a new feedback which is ISS with respect to actuator errors. 
Regularity of the feedback is essential, and for several years it was an open question to obtain 
a version of this result for systems which are only stabilizable by discontinuous feedback (for 
instance, nonholonomic mechanical systems). The breakthrough came with the realization that 
semiconcave control Lyapunov functions provide the key missing ingredient, and now we were 
able to obtain the general result, expressed in both the sampUng and Euler solution senses. 

The use of switching strategies for adaptive control requires the development of "LaSalle- 
like" invariance principles, which lead in turn to our study of ISS-like characterizations of 
observability of nonlinear systems, see [s59]. 

The goal of the Pi's work in this area is highly ambitious: the complete reformulation 
of the foundations of nonlinear control based on ISS-like ideas. This goal is very long-term, 
but definitely worth the effort: the payoff will be in the development of a consistent, elegant, 
and ultimately design-oriented, systematic approach to the subject. Previous grants supported 
research which led to trtily exciting advances during the last few years. However, the story is 
by no means complete, and we hope to be able to continue developing the theory. 

1.2    Systems and Control Problems Inspired by Molecular Biology 

Research in molecular biology and genomics has provided, and will continue to produce, a 
wealth of data describing the ingredients of cell behavior. There is a clear need to integrate this 
knowledge, as a prerequisite to a deeper scientific understanding as well as medical applications. 
Indeed, the new field of "systems biology" has arisen (see e.g. the new lEE joiurnal Systems 
Biology) having as its goal the understanding of the basic dynamic processes, feedback control 
loops, and signal processing mechanisms underlying life. Conversely, since evolution has resulted 
in robust, highly nonhnear and hybrid feedback systems, it is reasonable to expect that the study 
of systems biology will constitute a rich source of inspiration for innovative solutions to control 
and commimication engineering problems, as well as sensor and actuator design and integration. 
The PI has recently started the study of several mathematical questions in systems and control 
theory which arise from molecular biology models. 



1    OVERVIEW 5 

The need for mathematical models of feedback in cellular biology has been long recognized, 
and seminal work was done during the past 30 or more years by researchers such as Glass, 
Goldbeter, KauflEman, Othmer, Savageau, Segel, Tyson, and many others. What makes the 
present time special is the availability of huge amounts of data - generated by the genomics 
and proteomics projects, and research efforts dealing with the characterization of signaling 
networks - as well as the possibility for experimental design afforded by genetic engineering 
tools (gene knock-outs and insertions, PCR) and measurement technology (Green Fluorescent 
Protein and other reporters, as well as gene arrays). 

Background 

The hfe sciences are in the midst of a major revolution, which will have fundamental impUcations 
in biological knowledge and medicine.Work in genomics has as its objective the complete decod- 
ing of DNA sequences, providing what one may call a "parts list" for the proteins potentially 
present in every cell of the organism being studied. The elucidation of the three-dimensional 
structure of the proteins so described is the goal of the area of proteomics. The shape of a 
protein, in turn, determines its function: proteins interact with each other through "lego-like" 
fitting of parts in "lock and key" fashion, and their conformation also enhances or represses 
DNA expression through selective binding. One of the main themes and challenges in current 
molecular biology lies in the understanding of cell behavior in terms of cascades and feedback 
interconnections of elementary "modules" which appear repeatedly. On the other hand, the 
successes of systems theory have been, in large part, due precisely to its ability to analyze 
comphcated structures on the basis of the behavior of elementary subsystems, each of which 
is "nice" in a suitable input/output sense (stable, passive, etc), in conjunction with the use of 
tools such as small gain theorems. Thus, control-oriented modeling and analysis of feedback 
interconnections will become an integral component of building effective models of biological 
systems. 

One may view cell life as a huge "wireless network" of interactions among proteins, DNA, 
and smaller molecules involved in signaling and energy transfer. As a large system, the external 
inputs to a cell include physical (UV radiation, temperature) as well as chemical (drugs, hor- 
mones, nutrients) signals. Its outputs include chemicals which may in turn affect other cells, 
the movement of flagella or pseudopods, the activation of transcription factors, and so forth. 
The study of cell networks leads to the formulation of a large number of questions of a systems 
theory flavor. What is special about the information-processing capabiUties, or input/output 
behaviors, of such networks, and how does one characterize these behaviors in terms familiar 
to control theory? What "system-theoretic modules" appear repeatedly? What are the sta- 
bility properties of the various cascades and feedback loops which appear in cellular signaling 
networks? Inverse or "reverse engineering" issues include the estimation of system parameters 
(such as reaction constants) as well as estimation of state variables (concentration of protein, 
RNA, and other chemical substances) from input/output experiments. Generically, these ques- 
tions may be viewed respectively as tlie identification and observer (or filtering) problems which 
are at the center of much of control theory. 
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Recent Accomplishments 

Control and systems problems motivated by molecular biology tend to resemble similar prob- 
lems that arise in engineering control or dynamical systems. However, these resemblances are 
oftentimes misleading, because the precise problem formulations may be very different from 
those in the respective more classical applications. This issue has driven much of the Pi's 
interest in the subject. 

There follows a quick overview of several areas of the PFs recent research. More details on 
selected topics are provided in Section 2.2. 

Monotone Control Systems 
Mitogen-activated protein kinase (MAPK) cascades represent a "biological module" or sub- 

circuit which is ubiquitous in eukaryotic cell signal transduction processes and is a critical 
component of pathways involved in cell proliferation, differentiation, movement, and death. 
Appearing in several variants, this system is made up of a cascade of three smaller subsystems, 
with certain feedback loops acting in regulatory modes. Research into MAPK cascade dynamics 
is a major area of interest in biology, with implications not only to natural processes but even 
to areas such as bio-terrorism (Bacillus anthracis, which causes of Anthrax, acts by secreting a 
toxin called Lethal Factor (LF), which disrupts the "connection" between the second and third 
subsystems in the cascade). 

Our research in this area was originally motivated by work of Kholodenko, which dealt with 
the possible onset of oscillations under negative feedback in a MAPK cascade, specifically, the 
inhibitory phosphorylation of upstream SOS by p42/p44 MAPK (ERK). Since such periodic 
behavior has not been observed experimentally, one would like to understand what conditions 
guarantee the non-existence of oscillations in systems of this kind (modeled mathematically by 
several authors. 

Small-gain theorems are routinely used in control theory in order to guarantee stability. 
However, classical small-gain theorems cannot be used, at least in any obvious "off the shelf" 
fashion, if the location of the closed-loop steady-states depends on the precise gains of the 
feedback law (or if there are multiple such states). Negative (or "inhibitory") feedback in 
molecular biology is ahnost never of the form u = -k{x - x*), which would preserve the 
equilibrium x*. Rather, it may take a form such as "l/{k + x)" so that the closed-loop steady 
state depends on the actual value of the parameter k. For example, the equilibrium x = 4 in 
x = -x + A gets moved to x = 1 under the inhibitory feedback resulting in a; = -x -1- 4/(3 -I- x). 
In [s61] and [s60], we introduced the notions of asymptotic amplitude for signals, and associated 
Cauchy gains for input/output systems, and provided a Lyapunov-like characterization which 
allows the estimation of gains for state-space systems. We then stated a small-gain theorem 
expressed in terms of Cauchy gains, and used these results to obtain a very tight estimate of 
the onset of Hopf bifurcations in the MAPK model studied by Kholodenko. 

The results on Cauchy gains allowed us to deal with a restricted type of MAPK cascade 
(single-phosphorylation at each stage). However, a fuller, and more realistic, model was harder 
to analyze. The breakthrough came when we reahzed (with David Angeli) that each subsystem 
in the cascade is a monotone system with inputs, with respect to an appropriate partial order 
in states. 

Monotone systems are dynamical systems x = /(x) for which trajectories preserve a partial 
ordering in K".   They include the subclass of cooperative systems, for which different state 
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variables reinforce each other (positive feedback) as well as certain more general systems in 
which each pair of variables may affect each other in either positive or negative, or even mixed, 
forms. Among the classical references in this area are the textbook by Hal Smith by Hirsh 
and Smale. The concept of monotone system had been traditionally defined only for systems 
with no external inputs (nor outputs). The first objective of the papers [s57] and [s31] was to 
extend the notion of monotone systems to systems with inputs and outputs, and then to provide 
easily verifiable infinitesimal characterizations of monotonicity (expressed in nonsmooth analysis 
terms, via Bouligand tangent cones). This is by no means a purely academic exercise, but it is 
a necessary first step in the study of interconnections, especially including feedback loops, built 
up out of monotone components. 

We also introduced the notion of steady-state response for every constant input, or static 
input/output characteristic, and showed, in particular, that such responses are always well- 
defined for the basic MAPK subsystems, no matter what are the form of the kinetics or the 
numerical values of parameters. (This fact requires a careful proof -even if biologists alwa}^ 
assume it to be true- as it amounts to proving a global stability result for a nonhnear system.) 
Cascades of monotone systems are easily shown to be monotone, and steady-state responses 
also behave well under composition, but negative feedback typically destroys the monotonicity 
of the original flow, and also potentially destabilizes the resulting closed-loop system. The 
main result in [s57] and [s31] was a small-gain theorem for negative feedback loops involving 
monotone systems with well-defined i/o characteristics, and applied, in particular, to MAPK 
cascades. 

Although motivated by MAPK cascades, the results are far more general. The paper [sl3] 
presented a variant of the small-gain theorem from [s57] and [s31], suitable for "ahnost global" 
(meaning that the domain of attraction is open dense) stability of monotone control systems 
which have well-defined "almost" i/o characteristics. This variant was required by the study 
in [s37] and [s34], which presented small-gain theorems guaranteeing the lack of oscillatory 
or more comphcated behavior in a large class of Lotka-Volterra systems with predator-prey 
interactions. 

Yet another application of these ideas can be found in the paper [s36], dealing with 
chemostats, which describe the interaction between microbial species which are competing for 
a single nutrient. For chemostats, a well-known fact is the so-called "competitive exclusion 
principle," which states roughly that in the long run only one of the species survives. This is in 
contrast to what is observed in nature, where several species seem to coexist. This discrepancy 
has lead many researchers to propose modifications to the model that bring theory and practice 
in better accordance. In particular, [s36] added death rates due to crowding effects, and for 
such modified systems, presented an easily checkable condition on coefiicients which guarantees 
the existence of a global attractor. 

A very different line of research deals with positive feedback loops. Starting with systems 
which have a well-defined i/o characteristic and are also monotone, positive feedback preserves 
monotonicity but, in general, introduces multiple steady states. Multi-stationarity by positive 
feedback is a mechanism that has been long proposed as a molecular-biological basis for cell 
differentiation, development, and periodic behavior described by relaxation oscillations, since 
the classic work by Delbriick, who suggested in 1948 that multi-stability could explain cell 
differentiation, and continuing to the present. Using the theory of strictly monotone systems, 
together with basic facts about system gains, we were able in [s3] and [s47] to show that the 
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location and, more importantly, stability properties of steady states, can be determined easily 
from a planar plot, and a theorem guarantees that every trajectory, except at most for a set of 
measure zero of initial conditions, converges to one of the steady states so identified. We also 
gave a discussion of hysteresis behavior, as well as a subtle counterexample showing that mono- 
tonicity plays a crucial role, and cannot be dispensed with as an assumption. The paper [s2] 
deals with the appUcation to biological models, as well as graphical tests for monotonicity. 

Systems IdentiGcation and Reverse Engineering 
The paper [s48] proposed a novel quantitative method for determining functional interac- 

tions in cellular signaling and gene networks. The method can be used to explore cell systems 
at a mechanistic level, or applied within a modular framework, which dramatically decreases 
the number of variables to be assayed. The topology and strength of network connections are 
retrieved from experimentally measured network responses to successive perturbations of all 
modules. In addition, the method can reveal functional interactions even when the compo- 
nents of the system are not all known, in which case some connections retrieved by the analysis 
will not be direct but correspond to the interaction routes through unidentified elements. The 
method was tested and illustrated using computer-generated responses of a modeled MAPK 
cascade and gene network. 

The question of determining such interactions fits in the general framework of realization 
and identification theory, but is technically different because of the lack of closure under con- 
catenation of biologically realistic inputs. (Thus, technically, the problem is no more one of 
semigroup representation, as classically done in control theory.) A related general question 
is: given a set of differential equations whose description involves unknown parameters, such 
as reaction constants in chemical kinetics, and supposing that one may at any time measure 
the values of some of the variables and possibly choose external inputs from a finitely param- 
eterized class to help excite the system (but without assuming any semigroup closure of this 
class of inputs), how many experiments are sufficient in order to obtain all the information 
that is potentially available about the parameters? The paper [s53] established that the best 
possible answer (assuming exact measurements) is 2r -1-1 experiments, where r is the number 
of parameters. Moreover, in a precise mathematical sense, a generic set of such experiments 
suSices. 

Finally, we continued to work on systems identification regarded as an instance of the general 
problem of "learning" an imknown function. The papers [s9] and [s70] took a computational 
learning theory approach to a problem of linear systems identification: assume that inputs are 
generated randomly from a known class of finite bandwith, specifically that they are (unknown) 
hnear combinations of k known sinusoidals, and that the output of the system is observed at 
some single instant of time. The main result estabUshes that the number of samples needed 
for identification with small error and high probability, independently from the distribution of 
inputs, scales polynomially with n, the system dimension, and logarithmically with k. 

Dynamics and Observers for Biochemical Networks 
Among other tasks, the immune system is charged with the destruction and elimination 

of invading organisms and of the toxic products that they produce, as well as the destruction 
of virus-infected or mutated cells. One of the most challenging problems in the study of the 
immune system is to understand how it manages to distinguish among "self" and "other" while 
still being able to react fast. 
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One approach to this question was proposed by McKeithan, who suggested that a chain of 
modifications of the T-cell receptor complex, via t)TOsine phosphorylation and other reactions, 
may give rise to both increased sensitivity and selectivity of response. This process, which he 
called "kinetic proofreading" because of its analogy to an older model proposed by Hopfield for 
DNA error correction, was modeled by McKeithan for T-cell receptor (TCR) and peptide-major 
histocompatibility complex (MHC) interactions by means of a certain set of nonlinear ordinary 
differential equations. The steady states that result are interpreted as a "signal" for antigen 
recognition. Thus, it was natural to ask if the steady states of this system are unique, if they 
are asymptotically stable, and so forth. 

This led the PI to a new direction of research. The paper [s66] dealt with the theory of 
structure, stabiUty, robustness, and stabilization for a class of nonlinear systems, originally 
studied by Feinberg, Horn, and Jackson in the 1970s and 80s, which arises in the analysis of 
biochemical networks. This paper extended their results, to obtain global stability conclusions 
that apply to the kinetic proofreading model for T-cell receptor signal transduction, as well as 
provided bounds on robustness under unstructiured pertvirbations and feedback stabilization. 
The class of nonlinear systems that arises in this fashion is very different from others typically 
considered in control theory, and they are endowed with strong robustness properties. 

Furthermore, when outputs are exphcitly considered, problems of filtering can be posed. 
In [s54] and [s71], we gave necessary and sufficient condition for detectability and an explicit 
construction of globally convergent observers. An alternative observer, which has enhanced 
robustness (expressed through an ISS property) to additive disturbances, was studied in [s69]. 

Internal-Model Principle 
One strength of control theory is that it tells us that certain structures must be present in 

systems, in order for regulation objectives to be met. Such insight can help guide experimental 
research, as it suggests trying to find the corresponding subsystems, and may thus help in 
model validation. Conversely, the absence of a critical subsystem might be an indication that 
the biological entity being studied does not regulate its behavior in some hypothesized sense. 

In particular, and motivated by the thought-provoking paper by Doyle's group, we became 
interested in understanding the role of internal models in biological adaptation. Recall that the 
classical internal model principle (IMP due to Francis and Wonham) states that if controller 
regulates a system against external disturbances in some family, and if this regulation is struc- 
turally stable in a precise mathematical sense, then the controller must necessarily contain a 
subsystem which can itself generate all such disturbances (and which is driven by a suitable 
"error" signal). A potential drawback, when attempting to use this theorem in biological appli- 
cations, is that the structural stability criterion may be impossible to check: it would imply for 
instance regulation even in the presence of direct connections from inputs, such as cell receptors, 
to outputs, such as flagellar motors. Thus, once again, one has a problem which "sounds" just 
like a standard problem in control theory, yet which mathematically differs in a subtle fashion. 

In [s41], we gave an internal model theorem which did not require the assumption of stjuc- 
tural stability (nor, for that matter, an a priori requirement for the system to be partitioned 
into separate plant and controller components). Instead, a "signal detection" capability is im- 
posed. These weaker assumptions make the result better applicable to cellular phenomena such 
as the adaptation of E.coli chemotactic tumbling rate to constant concentrations. The "signal 
detection" property makes a lot of sense in biological applications (a signal must be detected 
with very high gain, and an action commanded, but the command may be metabolically too 
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expensive to be kept "on" for very long) but not necessarily in all engineering applications (we 
would not want, for instance, the passengers in an automobile to hit the car roof as hard as 
possible before an active suspension system takes over and regulates against road bumps). 

Adaptive Control of Bifurcation Parameters 
Some biological systems are believed to operate at a critical point between stability and 

instability, which brings up the issue of how bifurcation parameters may be automatically 
tuned to this critical value. The papers [s29] and [s30] were motivated by two such instances 
from the literature: neural integration in the nervous system, and hair cell oscillations in the 
auditory system. In both examples, the. question arises as to how the required fine-tuning may 
be achieved and maintained in a robust and reliable way. As with the other questions illustrated 
here, this led to a new type of problem in control theory, related but in fact different from other 
work on "bifurcation control" in the literature. We formulated this question in the language of 
adaptive control, and presented solutions in some simple instances. 

1.3    Other Nonlinear Control Research 

We summarize here other recent research accomplishments by the PI in the general area of 
nonhnear systems. 

Control of Mechanical Systems 
In [s72] and [s46], we addressed questions of time-optimal control for mechanical systems 

with possible dissipation terms. The Lie algebras associated with these systems enjoy certain 
special properties. These properties were explored and are used in conjunction with the Pon- 
tryagin maximum principle to determine the structure of singular extremals and, in particular, 
time-optimal trajectories. The theory was illustrated with an appUcation to a time-optimail 
problem for a class of underwater vehicles. 
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2    Selected Topics 

Given the range of subjects treated, and the different methodologies employed in each case, we 
can only briefly cover a few selected subtopics. The published papers, and the Pi's website 

http: //www. math. rutgers. edu/~sontag 

provide technical details. For the topics treated, we do not repeat here most of the introductory 
material and references aheady discussed in the previous section. 

2.1    Some Details: ISS and Related Notions 

We describe first topics related to input to state stability. 

JOSS and iISS Characterizations 
Detectability is one of the central notions of control theory. It plays a major role in static 

state-feedback analysis (Lasalle's invariance principle) as well as in stabilization by means of 
dynamic output feedback and in observer design. Several alternative definitions are possible 
when trying to precisely define detectability in the context of nonlinear control. According 
to the specific problem under consideration, different variants are useful in capturing useful 
features of its linear counterpart. One version which has proved to be especially powerful for 
systems subject to exogenous disturbances, is to define this notion in an ISS sense, leading to 
what we have called "input-output-to-state stability" (lOSS). Such a notion not only allows 
one to extend Lasalle-type stability results to the case of non-autonomous systems, but it also 
provides a machinery, fuUy compatible with the formalism of input-to-state stability, that helps 
one understand issues such as minimum-phase behavior or certainty equivalence. 

Although general nonlinear systems may often exhibit an overwhelming variety of behaviors, 
it turns out that many other "reasonable" formulations of the detectability property end up 
being equivalent to lOSS. Recently, we proved in work with Krichman and Wang in [s64] 
that lOSS is equivalent to a dissipation property. In the even more recent work [sl6] with 
AngeU, Ingalls, and Wang, we were able to characterize lOSS as the conjunction of several 
important and natural weaker notions, in essence generalizing the fact (for differential equations 
with no controls nor outputs) that global asymptotic stability can be characterized by the 
combination of (neutral) stability and attractivity. For systems with inputs, such generalizations 
are nontrivial because, in contrast to ordinary (finite-dimensional) differential equations, there 
is no compactness to appeal to (even with respect to weak topologies on inputs, since we 
do not have any convexity properties). As an application of the results, we also obtained 
reformulations of the notion of integral input to state stability (iISS). Proving these results 
forced us, in turn, to establish facts of independent interest in differential inclusions, such as a 
generalization of the Filippov-Wazewski Relaxation Theorem to infinite time intervals, in [s35] 
(see also [s56] for the corresponding theorem in Banach spaces) and a theorem showing that, 
for locally Lipschitz differential inclusions, uniform and non-uniform global asymptotic stability 
are equivalent, cf. [s4]. Let us give an outline of [sl6] next. 

We consider systems of the following general form: 

xit) = f{x{t),u{t)),   y{t) = h{xit)), (1) 
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where, for each t>0, x{t) 6 K", u{t) e U, a subset of R"" which here we take for simplicity to 
be all of E"*. We assume that the maps / : E" x E'" ^ K" and /i: R" ^ W are locally Lipschitz 
continuous, with /(0,0) = 0 and h{0) = 0. The symbol \-\ denotes the usual EucUdean norms. 
By an input we mean a measurable and locally essentially bounded function u : J -> IX, where. 
I is a subinterval of E which contains the origin. Given any input u and any ^eM.'^, the unique 
maximal solution of the initial value problem x = f{x,u), x{0) = ^ (defined on some maximal 
open subinterval of T) is denoted by x(-, ^, u). When I = E>o, this maximal subinterval has the 
form [0, T(,u)- The system is said to be forward complete if for every initial state ^ and for every 
input u defined on E>o, T^,u = +oo- The corresponding output is denoted by y{;^,u), that 
is, y{t, ^, u) = h[x{t, (,, u)) on the domain of definition of the solution. The Loo-norm (possibly 
infinite) of a function v defined on I is denoted by ||v||, i.e., ||v|| = (ess)sup{|u(t)| ,< € 1). In 
particular, for a maximal trajectory x(-,^,w) and the corresponding output function j/(-,^,u) 
of (1) defined on [0,7>,u), ||u||, ||x|| and ||y|| denote the Loo norm of u(-), x{-,^,u) and y{;^,u) 
respectively on [0,Tf,„). (We make a slight abuse of notation and use sup and Umsup to 
mean the essential supremiun where appropriate.) For a function v defined on an interval J, 
if Ii C I, we use v^. to denote the restriction of u to Ji, i.e., Vj.^{t) = v{t) if t G Ii, and 
Vj (t) = 0 otherwise. We use standard terminology on comparison functions: AT is the class 
of continuous, increasing functions from [0,oo) to [0,oo); K. is the set of jV functions 7 that 
are strictly increasing and satisfy 7(0) = 0; /Coo is the set of )C functions that are unbounded; 
£ is the set of functions [0, +00) -^ [0, +00) which are continuous, decreasing, and converge 
to 0 as their argument tends to +00; /C£ is the class of functions [0,00)^ —^ [0,00) which 
are class IC on the first argument and class £ on the second one. A positive definite function 
7 : [0,00) -^ [0,00) is one such that 7(0) = ,0 and j{s) > 0 for all s > 0. The following 
notions were introduced in our previous work: The system (1) satisfies the unboundedness 
observability (UO) property if, for each state ^ and control u such that T^^u < 00, it holds that 
limsupt_,r |y(*)^)")l = +00, that is, for each state ^ and control u, Tj,„ < 00 =^ \\y\\ = +00. 
The system! (1) is input-output-to-state stable (lOSS) if there exist some P G ICC, 7u G /C and 
jy E K, such that 

\x{t,^,u)\<pm,t)-h^um\)+iy{\\ym\\) (2) 
for all t G [0, Tf,„), all ^ G E" and all w(-). Clearly, the lOSS property implies the UO property 
The following local version is also important: The system (1) is locally lOSS (local lOSS) if 
there exist S>0 and functions P G ICC, 7u, jy E K. so that for any ^ G E", any u(), 

max{|e|,|H|,||y||}<<5 =>  |x(t,^,u)| < ^(|eU)+ 7«(IHI)+ 7j/(lly[o,t]ll)Vf G [O.T^,,.).     (3) 

We also say that the system (1) satisfies the input-output limit property (lO-LIM) if for 
some 7u, jy G K., 

mi   Jx(t,^,u)| <max{7„(||u||),7j,(||y||)} 

for all ^ G E" and all inputs u(-), that it satisfies the input-output asymptotic gain property 
(lO-AG) if solutions are ultimately bounded by some nonhnear gain function of ||u|| and \\y\\, 
that is, for some 7^, 'fy G IC, 

\imsup\x{t,^,u)\ < max{7„(||w||),7y(||j/||)} 
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for all ^ G R" and all inputs u(-); that it satisfies the input-output-to-state boundedness property 

(lO-BND) if for some (TQ, CTU, <^y S ^f, it holds that 

\x{t,£„u)\ < niax{(To(|^I),CT„(||u||),ay(||y[o,t]||)}, 

for all ^ e K" and all inputs w(-), and all t e [0, Tj,^), and finally that it satisfies the input-output 
global stability property (lO-GS) if the functions (JO,(TU, Cy above can be taken to be of class K. 
(It is not hard to see that each of the lO-AG, the lO-GS, and the lO-BND properties implies 

the UO condition.) 
Thinking of these detectability properties as "stability modulo inputs and outputs", we 

can identify lOSS with asymptotic stability, lO-GS with (neutral) stability, and lO-AG with 
attractivity. In this context, it seems perfectly natural that lOSS should be equivalent to the 
combination of lO-GS and 10-AG, and indeed that is one of the decompositions which appears 
in our main result. Related results follow by considering other "basic" stability-like notions, 
such as lO-LIM. Among many others, the paper [sl6] proves equivalences among the following 

statements: 

• (lOSS) 
• (lO-AG) & (lO-GS) 
• (lO-AG) & (local lOSS) 
• (lO-LIM) & (lO-GS) 
• (lO-LIM) & (local lOSS) 

We then went on to derive asymptotic characterizations of the integral input-to-state stabihty 
property. Recall that we defined a system to be integral input-to-state stable (iISS) if there 
exist functions P G KC, cr G /C and 7 G /C, such that, for all ^ G R" and all u, the solution 
x{t, ^, u) is defined for all < > 0, and 

\x{t,^,u)\<m\^i) + 'iiJl^iH^)\)ds) 

for all t > 0. In order to obtain an interesting separation theorem, we introduced in [sl6] the 
following properties. We say that a system (1) satisfies the Bounded Energy Weakly Converging 
State (BEWCS) property if for some c of class Koo, it holds that 

/•+CX3 

/       (T{\u{s)\)ds < -t-00 =?> liminf |a;(f,^,u)| = 0. 
Jo t->+oo 

(To be more precise, this means that for any ^ and any u for which j^ a{\u{s)\) ds < 00, it 
holds that r^,u = 00, and liminft_+oo \x{t,^,u)\ = 0.) We say that it satisfies the Bounded 
Energy Frequently Bounded State (BEFBS) property if for some a of class /Coo, it holds that 

r+00 
/       a{\u{s)\) ds <-\-oo =» liminf |a;(t,^,ti)| <-Hoo. 

JQ t->+oo 

(To be more precise, for any ^ and any u for which J^ a-{\u{s)\) ds < 00, it holds that T^,u = 00, 
and liminft-+oo \x{t,^,u)\ < 00.) (BEFBS and BEWCS each impUes forward completeness.) 
Finally, we say that a system as in (1) is zero-GAS if the corresponding zero-input system 
X = f{x, 0) is globally asymptotically stable; that it is zero-LS if the zero-input system is locally 
(neutrally) stable; and that it is zero-LAS if the zero-input system is locally asymptotically 
stable. Then, we proved the equivalence among the following statements: 
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• iISS 
• BEWCS and zero-LS 
• BEFBS and zero-GAS 

These results complete the theory of lOSS and iISS in very elegant ways, and make the con- 
cepts much easier to verify in applications. We will next introduce another important systems 
property, measurement to error stability (MES). 

MES 
When discussing systems with outputs, the output signal typically plays one of two roles. 

One is that in which the outputs are considered as measurements. Here, one supposes that 
knowledge of the whole state is not available, but rather that only partial knowledge of the 
state can be used, and the output is meant to provide information about the state. This leads 
to our detectability notion of output to state stability (OSS). A second role for outputs occurs 
when the goal of the control design is not to regulate the behavior of the entire state, but 
rather only to regulate the output signal. The theory of output regulation addresses precisely 
this situation, that of keeping an output small. This leads, within the ISS framework, to the 
notion of stability of the output signal described by input to output stability (lOS). (In the 
case of systems with no inputs, the problem of stability of a subset of the state variables is the 
special case of stability of an output signal which is a projection, and it has been addressed in 
the ordinary differential equations literature under the name "partial stability" by Vorotnikov 
and others.) 

Consider now the case in which both the above situations occur. That is, there are two 
output signals, one which is measured, and the other which must be regulated. A special 
case of this situation has been addressed in the output regulation theory, imder the name 
"error feedback". This theory formulates the question of regulating an output of the system 
(the error) with knowledge of that output only. The more general case is when there are two 
distinct channels playing these two roles. In the paper {s58], we generahzed the notion of OSS 
to this situation by introducing the concept of measurement to error stability (MES), which 
can be viewed as a notion of partial detectability through the measurement channel. We gave 
a partial Lyapunov characterization of the MES property, accomplished by first comparing the 
MES property to a notion of output stability relative to a set. This notion, which we called 
stability in three measures (SIT) was characterized by the existence of a lower semicontinuous 
Lyapunov function. It was shown that the SIT property implies MES, and that the converse 
holds imder an additional boundedness assumption. The analysis was carried out on systems 
described by differential inclusions - implicitly incorporating a disturbance input with compact 
value-set. Let us now give some details. We consider the differential inclusion 

x{t)eF{x{t)) (4) 

with two output maps 
y{t) = h{x{t)),     wit) = g{x{t)), 

and a map w : E" -+ R>o. We take the state x e E". . We assume: the set-valued map 
F from R" to subsets of E*^ is locally Lipschitz with nonempty compact values, the output 
maps /i : E" —> E^" and 5 : E" -+ R^*" are locally Lipschitz, the map u; (to be used as a 
measinrement of the magnitude of the state vector) is assumed continuous and proper, and the 
differential inclusion (4) is forward complete.   We will denote |-|^ := a;(-).   (The use of |-|^ 
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allows a framework which includes the Euclidean norm, distance to a compact set, and more 
general measures of the magnitude of the state.) For each C C M" we let S{C) denote the set of 
maximal solutions of (4) satisfying x(0) E C equipped with the topology of uniform convergence 
on compact intervals. If C is a singleton {£}, we use the shorthand 5(^). We set 5 := 5(E"), 
the set of all maximal solutions. Given a trajectory x(-) G &{£) for some ^ € K", we denote 
y{t) = h{x{t) and w{t) = 9ix{t)), for all t > 0. 

Our main concept is the following one. We say that the system (4) is measurement to error 
stable (MES) if there exist /3 € ^£ and 7 G ^ so that 

|y(<)| < max{^(|a;(0)L,i),7(lkll[o,t])} 

for each x{-) G S, and all i > 0. In the investigation of the MES property, the following notion 
of relative stability of the error will be useful. This is a notion of output stability which is 
applicable to systems with a single output y. Given a closed subset D of the state space E", we 
say that the system (4) is relatively error stable (RES) with respect to D if there exists jieKC 
so that for any solution x{-) G S, if there exists ti > 0 so that, if x{t) ^ D for all t G [0,ti], 
then 

|y(t)|<^(|x(0)L,t)       VtG[0,ta]. (5) 

A special case of this property occiurs for a system with two outputs when the set D is defined by 
an inequality involving the two output maps, as follows. Let p e K,. We say that the system (4) 
satisfies the stability in three measures (SIT) property (with gain p) if there exists /3 G /C£ so 
that for any solution x{-) G S, if there exists <i > 0 so that, if \y{t)\ > p{\w{t)\) for all t G [0,<i], 
then (5) holds. It is immediate that SIT is equivalent to relative error stability with respect to 
the set D := {^ G K" : \h{^)\ < p{\giO\)}- Finally, we also introduced in [s58] the following 
relative stability property. The system (4) satisfies the relative measurement to error bounded 
property (RMEB) if there exist K. functions pi, cri, and (J2 so that for any solution x(-) G 5, if 
there exists ti > 0 so that, if \y{t)\ > pi{\w{t)\) for all t G [0,ti\, then for all t G [0,ti], 

\y{t)\ < max{ai(|/i(x(0))|),a2(||t/;||jo,t])}. 

We provided dissipation characterizations as follows. Given an open set E C R", a lower 
seraicontinuous function F : R" -> R>o is an RES-Lyapunov function for system (4) on E if 
there exist ai, 02 G X:oo so that for all ^ G JS, ai(|/i(OI) < ViO < a2(|^L). and there exists 
oca '■ ^>o —» K>o continuous positive definite so that for each ^ £ E, ^ -v < —oc3{V{^)) for all 
C G doVi^) and all v G F(^), where we are denoting by doVi^) the viscosity subdifferential 
of V at ^, i.e. the (possibly empty) set of viscosity subgradients of V at ^. We say that V is 
an exponential decay RES-Lyapunov function for system (4) on E if this property holds with 
Q:3(r) = r. We also specialize the above definitions for the notion of stability in three measures. 
Let p G ^. A lower semicontinuous function V : R" -> R>o is an SIT-Lyapunov function for 
system (4) with gain p if there exist ai, a2 G ICoo so that for each ^ so that \h{^)\ > pi\gi(,)\)^ i* 
follows that ai(|/i(C)|) < V{C) < Q!2(|^L). and there exists as : E>o ^ R>o continuous positive 
definite so that for each ^ so that \h{0\ > /o(|ff(0|), C ■ '^ < -aaiViO) for all C G doViO and 
all V G F{^). Finally, V is an exponential decay SIT-Lyapunov function for system (4) with 
gain p if in addition this holds with 0:3 (r) = r. 

We then obtained the following theorem. For any system (4) and closed set D C R", and 
denoting E = R"\Z), the following are equivalent: 
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• The system is relatively error stable with respect to D 
• The system admits an RES-Lyapunov function on E 
• The system admits an exponential decay RES-Lyapunov function on E 

As a corollary (set D = {^ G E" : \h{^)\ < p{\9iO\)}), we have, for any p E JC, that the 
following are equivalent: 

• The system satisfies the SIT property with gain p 
• The system admits an SIT-Lyapunov function with gain p 
• The system admits an exponential decay SIT-Lyapunov function with gain p 

This provides a characterization of the SIT property, which is related to MES as follows: MES 
implies SIT, and SIT and RMEB together imply MES. In conclusion, if (4) satisfies MES, then 
it admits an exponential decay SIT-Lyapunov function. Conversely, if it satisfies the RMEB 
property and it admits an SIT-Lyapunov function, then it satisfies MES. 

ISS with Respect to Derivatives 
Let us now turn to the derivative-ISS property that we studied in [s43]. In the ISS literature, 

inputs (thought of as "disturbances") are arbitrary (locally essentially bounded and Lebesgue- 
measurable) functions. Such an extremely rich set of possible input perturbations is well suited 
to model noise, as well as constant or periodic signals, slow parameter drift, and so on. If, 
on the one hand, this makes the notion of ISS extremely powerful, on the other hand it is 
known that ISS might sometimes be too stringent a requirement. In the output regulation 
literature, instead, the focus is often on "deterministic" disturbances, i.e., signals that can 
be generated by a finite dimensional nonhnear systems, (usually smooth). This is a class of 
persistent disturbances for which, roughly speaking, the following is true: 

||d||oo small ^ \\d\\oo and derivatives of arbitrary order are also small. 

Under similar circumstances, for instance when cascading asymptotically stable systems, re- 
garding the "forcing" system's state as a disturbance typically yields 

lim sup \d{t) 1 = 0     =J>    lim sup \d(t) \ = 0. 
t—^+00 t-++0O 

Nevertheless, the classical definition of input-to-state stability completely disregards such ad- 
ditional information. Tracking of output references is yet another area where "derivative" 
knowledge is usually disregarded (the analysis is often performed only taking into accoimt con- 
stant set-points), whereas such information could be exploited to get tighter estimates for the 
steady-state tracking error due to time-varying, smooth reference signals. An analogous situ- 
ation also arises when parameter variations are taken into account (in adaptive control), and 
we expect the system to have suitably stable behavior for slow parameter drifts. The study of 
systems with slowly varying parameters has long been an focus of research. The analysis of 
such a system is usually carried out by first considering the systems corresponding to "frozen" 
parameters. If for all frozen parameters, the corresponding frozen systems uniformly posses 
certain stability properties, then it is reasonable to expect that the system with slowly varying 
parameters will posses the same property. A more general question is how the magnitudes of 
the time derivatives of the time varying parameters affect the behavior of the systems. In [s43]. 
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we offered an ISS-like stability notion which takes into account robustness with respect to dis- 
turbances and their time derivatives. The new notion of "D*=ISS" is defined through an estimate 
which involves the magnitudes of the inputs and their derivatives up to the fc-th order. We also 
proposed several properties related to the D'^ISS notion. All these properties serve to formalize 
the idea of "stable" dependence upon the inputs and their time derivatives. They differ in the 
formulation of the decay estimates which make precise how the magnitudes of derivatives affect 
the system. Finally, we illustrated by examples how these properties differ from each other and 
from ISS itself. Let us give some details now. 

We denote by M^'='°°(J), for any integer A; > 1 and any interval J, the Sobolev space 
consisting of all functions u : J -> E*" for which the {k - l)st derivative u^*^"^) exists and 
is locally Lipschitz. For fc = 0, we define W°'°°{J) as the set of locally essentially bounded 
u : J ^ W^. When J = [0,+oo), we omit J and write simply W'''°°. We say that the 
system (1) is kth derivative input-to-state stable {DHSS) if there exist some /C£-function P, 
and ;C-functions 70,7i, • • •, 7fc such that, for every input u e W'''°°, the following holds: 

\x{t,^,u)\< /?(|^|,t) + 7o(i|w||) + 7i(ll^i||) + ■ ■ • + 7fc (11"^'=^li) 

for all t>0. We say simply that the system is DISS when it is D^ISS and, of course, ISS is 
the same as D*'ISS for A; = 0. A dissipation characterization is as follows. Let A; > 1. The 
system (1) is D*=ISS if and only if there exists a smooth function F : R" x R'^ -* R>o such 

that 

• there exist some a, a € /Coo such that for all (x, jul'=~^l) G E" x R'='", it holds that 

«(|(rE,/xl'=-i])|) < y(^,^[fc-i]) < a(|(x,y'=-i])|); 

• there exist some a € /Coo, p e /Coo such that for all x G R" and aU /[z^ G R'"(fc+i) with 

M'*'' = (MO, Mil • • • 5 A^fc)' it holds that 

(where "(■)" means (x,/il*=-^l)). 

This provides a useful test for the property, and is helpful in proving a separation property 
analogous to those proved for lOSS and iISS and cited earlier. Clearly, if a system is D'^ISS, 

then it is forward complete (for u G W'''°°) and for some 70,71,..., 7fc G /C it holds that 

limsup \x{t,^,u)| < 7o(lkll) + 7i(l|w||) + • • • + 7fc(ll«^'°^ll)- 
t—KX) 

If this holds, for some 70,..., 7fc G /C, for all ^ G R" and all u G W'''°°, we say that a system 
satisfies the k-asymptotic gain (fc-AG) property. The less obvious and more interesting con- 
verse was also shown to be true, namely, for a forward complete system (1), the following are 
equivalent: 

• It is JD'=ISS 

• It satisfies the fe-AG property and the zero-input system x = f{x,0) is (neutrally) stable 
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Many other results are proved in [s43], regarding stability properties of cascades as well as 
further characterizations. We also show there that the DISS property is strictly weaker than 
plain ISS, which is of course not surprising. (Although, interestingly, the two properties are 
equivalent for systems of dimension one.) Also, obviously DISS implies an ISS property for 
constant inputs, but it is perhaps less obvious that the converse does not hold (ISS with respect 
to constant inputs does not imply Z?ISS). 

Cascades 
We now turn to some recent work on cascaded subsystems, with Arcak and Angeli, reported 

in [s55]. Constructive design methods such as backstepping and forwarding, which are based on 
recursive appUcations of cascade designs, together with the discovery of structural obstacles to 
stabilization such as the "peaking phenomenon" by Sussmann and Kokotovic, have paved the 
road to major advances in nonhnear control. One of the main motivations for the stabilization 
of cascades came from the linear-nonlinear cascade 

X   =   fix,z) (6) 

i   =   Az + Bu (7) 

resulting from input-output hnearization. Because global asymptotic stability (GAS) of the 
x-subsystem x = /(x, 0) is not sufficient to achieve GAS of the whole cascade with ^-feedback 
u = Kz, alternative designs which employ x-feedback were developed, such as the "feedback 
passivation" design of Kokotovic and Sussmann. To achieve GAS by z-feedback, several authors 
studied general cascades in which the ^-subsystem is nonlinear, and derived conditions for the x 
and z-subsystems that ensure stability of the cascade. Among these results, a particularly useful 
one is that if the x-subsystem is ISS with input z, and the z-subsystem is GAS, then the cascade 
is GAS. This result has been widely used for nonlinear designs based on the normal form, in 
which the zero dynamics (6) is ISS. Other results make less restrictive assumptions than ISS 
for the x-subsystem, but restrict the z-subsystem to be locally exponentially stable (LES). On 
the other hand, since the iISS property is less restrictive than ISS (because, in an iISS system, 
a bounded input may lead to unbounded solutions if its energy norm is infinite), [s55] analyzed 
the stability of nonhnear cascades in which the x-subsystem is merely ilSS. The admissible iISS 
gains for stability were characterized from the speed of convergence of the ^-subsystem. When 
the convergence is fast, the iISS gain function of the x-subsystem is allowed to be "steep" at 
zero. The paper showed that this trade-off between slower convergence and steeper iISS gain 
encompasses, and unifies, several results in the literature. In particular, if the x-subsystem is 
ISS then the slope of its iISS gain function is very gentle at zero, and tolerates every GAS 
^-subsystem no matter how slow its convergence is. On the other hand, if the convergence is 
exponential, that is if the z-subsystem is LES, then the cascade is stable for a large class of 
iISS gains. This class includes all iISS x-subsystems that are affine in the input z. Thus, for 
systems like (6)-(7), where a control law can be designed to render the z-subsystem GAS and 
LES, the iISS property of the x-subsystem ensures GAS of the cascade. Several results in the 
literature are special cases of the main result, including those that restrict the x-subsystem to 
be ISS and those that restrict the z-subsystem to be LES. 

The paper [s55] also gave an output-feedback application of the cascade result, in the style 
of other work by Arcak. Due to the absence of a separation principle, it is necessary to design 
control laws that guarantee robustness against the observer error. A design was presented 
which renders the system iISS with respect to the observer error and, hence, ensures robustness 
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when the error is exponentially decaying. The advantage of this design over the more classical 
observer-based backstepping scheme is that it employs "weak" nonhnear damping terms which 
grow slower than previous ones, and result in a "softer" control law. Far more work is still 
required in this area, resulting in more general observer designs that make systems iISS with 
respect to observer error; see the latter discussion regarding separation principles, as well as 
the remarks about observers for chemical networks (which rely on an ISS property, as currently 
stated, and hence could potentially be greatly improved). 

ISS Stabilization Under Feedback 
A different direction of research is that in our work with MalisoflF and Rifford, reported 

in [sl4], which dealt with the ISS-stabilization of systems 

X = fix) + G{x)u (8) 

(where / and G are locally Lipschitz vector fields on K", /(O) = 0, and the control u is valued 
in E"*; we also studied possible extensions to fully nonlinear systems). The main theorems 
show that, if the system (8) is globally asymptotically controllable (GAC), then there exists a 
feedback iiT: E" ^ R"" for which 

X = fix) + Gix)Kix) + Gix)u (9) 

is ISS, which, when written as x = fix)+Gix)iKix)+u), can be interpreted as robustness with 
respect to actuator errors. Recall that one of the original motivations for the introduction of the 
notion of ISS was to give a precise formulation of the fact that stabilizable systems may be made 
also stable with respect to actuator errors. This was central to showing the existence of coprime 
factorizations for classes of systems including feedback linearizable systems. Since a continuous 
stabiUzing feedback K fails to exist in general, one is forced to consider discontinuous feedbacks 
K, so solutions of (9) are understood in the senses of sampling and of Euler solutions (each 
type of solution is covered by a different theorem). The results in [sl4] extended our original 
ones (1989), which dealt with the case when the original system is stabilizable with regular 
feedback (interestingly, however, the actual definition of K is different, in the new paper, even 
when specialized to the case covered by the older work). In particular, our results apply to the 
example of Brockett's nonholonomic integrator. 

It was a long-standing problem to obtain such generalizations, and they heavily rely upon the 
new techniques involving semiconcave control Lyapunov functions. Our results also strength- 
ened our paper 1997 with Clarke et al, which constructed feedbacks for GAC systems which 
render the closed loop systems globally asymptotically stable. They apply in the more general 
situation where measurement noise may occur. In particular, our feedback K has the additional 
feature that the perturbed system 

X = fix) + Gix)Kix + e) + Gix)u (10) 

is also ISS when the observation error e : [0, oo) —> E" in the controller is sufficiently small 
In this context, the precise value of e(<) is unknown to the controller, but information about 
upper bounds on the magnitude of e(t) can be used to design the feedback. We showed these 
theorems: (1) If (8) is GAC, then there exists a feedback K for which (10) is ISS for Euler 
solutions; (2) If system (8) is GAC, then there exists a feedback K such that (10) is ISS for 
sampling solutions. The first theorem characterizes the uniform limits of sampling solutions of 
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(10); from a computational standpoint, it is also desirable to know how frequently to sample in 
order to achieve ISS for sampling solutions. This information is provided by the second result. 

Let us provide some details of [sl4]. For each fc G N and r > 0, we let M'' he the set of 
measurable u : [0,oo) -^ K*" with are essentially bounded, Mr ~ {u G M'' : |u|oo < r}, where 
I • loo is the essential supremum, and rBk ■= {x € M*^ : |x| < r} for each fc G N and r > 0, 
whose closure is rBk- We also set C := {e : [0,oo) ^ K"}, sup(e) = sup{|e(<)| : t > 0} for 
all eeO, and 0„ := {e G O : sup(e) < 77} for each r] > 0. For any compact set J^ C R" and 
e > 0, we define the compact set :F^ := {xeW" : mi{\x -p\ : p E J^} < e}. Given a continuous 
function /i : R" x E'" -> E" : (x, u) 1-^ h{x, u) which is locally Lipschitz in x uniformly on 
compact subsets of R" x R"', we let 4>h{-, Xo, u) denote the trajectory of x = h{x, u) starting at 
Xo G R" for each u G M'^. In this case, (t>h{-,Xo,u) is defined on some maximal interval [0,<), 
with i > 0 depending on u and Xo- A system x = h{x,u) is said to be globally asymptotically 
controllable (GAG) provided there exist a nondecreasing function a : [0,oo) -> [0,oo) and a 
function /3 G /C£ satisfying the following: For each Xo G R", there exists u G M"^ such that 
\<j>h{t,Xo,u)\ < P{\xo\,t) for all t > 0; and \u{t)\ < ai\<j)h{t,Xo,u)\) for a.e. t > 0. In this 
case, we call a the GAG modulus of x = h{x,u). In our main results, the controllers are 
discontinuous feedbacks, so the dynamics will be discontinuous in the state variable. Therefore, 
we form trajectories through sampling, and through uniform limits of sampling trajectories, 
as follows. We say that TT = {to, <i, ^2, • • •} C [0,00) is a partition of [0,00) provided to = 0, 
ti < ti+i for all i > 0, and tj -> 00 as i -> +00. The set of all partitions of [0,oo) is denoted 
by Par. Let F : R" x R"^ x R"* -> R" : (x,p,u) i-> F{x,p,u) be a continuous function which 
is locally Lipschitz in x vmiformly on compact subsets of R" x R'" x R'". A feedback for F is 
defined to be any locally bounded function if : R" -> R"" for which K{0) = 0. In particular, 
we allow discontinuous feedbacks. The arguments x, p, and u in F are used to represent 
the state, feedback value, and actuator error, respectively. Given a feedback iiT : R" -> R"*, 
T = {to,ti,t2,...} G Par, Xo G R", e G O, and u G M"^, the sampling solution for the initial 
value problem (IVP) 

x(i)   =   F{x{t),Kix{t) + eit)),uit)) (11) 

x(0)   =   Xo (12) 

is the continuous function defined by recursively solving x(*) = F{x{t),K{x{ti) + e{ti)),u{t)) 
from the initial time ti up to time s, = sup{s G [<i,ti+i] : x() is defined on [ti,s)}, where 
x(0) = Xo- In this case, the samphng solution of (11)-(12) is defined from time zero up to time 
i = inf{si : si < tj+i}. This sampling solution will be denoted by i i-> x„{t]Xo,u,e) to exhibit 
its dependence on TT G Par, Xo G R", ti G M, and e G C?, or simply by x^ when the dependence 
is clear from the context. In particular, if Sj = fj+i for all i, then i = +00 (as the infimum of 
the empty set), so in that case, the sampling solution t t-^ XTr{t;Xo,u,e) is defined on [0,00). 
We also define the upper diameter and lower diameter of a partition n = {to,ti,t2,-■■} by 
d(7r) = sup(ti+i - ti) and d(7r) = inf(tj+i - tj) (sup and inf over i > 0) respectively. We let 
Par(5) := {TT G Par : d{n) < S} for each S > 0. We say that a function y : [0,00) -> R" is an 
Euler solution of (11)-(12) for u G vM provided there are sequences Wr G Par and Sr e O such 
that 

• d{Trr) -^ 0; 
• sup(er)/d(7rr) —> 0;  and 
• < i-> x^^(t; Xo, u, Br) converges uniformly to y as r -^^ +00. 
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We say that (11) is ISS for sampling solutions provided there exist f3 £ 1C£ and 7 £ ^oo 
satisfying: For each e,M,N >0 with 0 < £ < M, there exist S = 5{e, M, N) and K = «;(e, M, N) 
such that for each IT G Par(5), Xo e MBn, u £ M^, and e G O for which sup(e) < Kd(7r), 

\x^{t; Xo,u, e)| < max{;5(M, t) + i{N),e) 

for all < > 0. We say that the system (11) is ISS for Euler solutions provided there exist (3 £ ICC 
and 7 e ^00 satisfying: li u £ M, Xo £ R", and 11-> x{t) is an Euler solution of (11)-(12), then 

\xit)\ < /3{\Xo\,t) + j{\u\oo) 

for all t > 0. 
Let /i: R" X K*" -> R" : (x, u) i-> h{x, u) be continuous, locally Lipschitz in x uniformly on 

compact subsets of R" x R"', and so that h{0,0) = 0. Recall that a control-Lyapunov function 
(elf) for X = h{x, u) is a continuous, positive definite, proper function V : R" -> R for which 
there exists a continuous, positive definite function W": R" -> R and a nondecreasing function 
a : [0,00) -^ [0,00), which satisfy: 

VC £ dpV{x\     min   (CM^^,")) < -W{x) 
H<a(|x|) 

for all x G R". In this case, one calls (V, W) a Lyapunov pair for the system. (The proximal 
superdifferential (resp., proximal subdifferentiat) of a function V : fl -* R at x G fi, where fl is 
an open subset of R", which is denoted by d^V{x) (resp., dpV{x)), is defined to be the set of 
all C G R" for which there exist a, 77 > 0 such that F(y) - F(x) - a\y— xp < (C, y - x) (resp. 
V(y) - V{x) - a\y - xp > (C, 2/ - x)) for all y G x + r]Bn.) We proved in 1982 that elf's always 
exist for GAC systems. This theorem was considerably refined by Rifford, who showed that, 
for any GAC system, there exists a elf V which is semiconcave on R" \ {0} so that 

VC G diVix),   ,  min   (C, /i(x, u)) < -V{x) (13) 
H<a(|a;|) 

for all X G R". (A continuous function 5 : n -> R is semiconcave provided for any point Xo£0,, 
there exist p,C>0 such that g{x) + g{y) - 2g (^"j < C||x - yiP for all x,y£Xo + pBn- The 
limiting subdifferential of a continuous function V:f2—>KatxGnis diVix) := {g G R" : 
3x„ -^ X & qn£ dpV{xn) s.t. Qn -^ q}- If V is semiconcave, then it is locally Lipschitz, and 
0 ^ dLV{x) C d^Vix) for all x G 0.) The construction of the feedback is done starting from a 
elf as in this result. 

Let X •-> C(x) be any selection of dLV{x) on R" \ {0} and C(0) G R" be arbitrary. For each 
X G R" \ {0}, we can choose u = Ux £ a(\x\)Bm that satisfies the inequality in (13) for the 
dynamics h{x,u) = /(x) + G{x)u and C = dx)- First define the feedback Xi : E" -> R"' by 
Kiix) = Ux for all X 7^ 0 and JK'I(O) = 0. Next, introduce the following functions: a(x) = 
(C(x), fix) + G{x)Ki{x)), bj{x) = {ax),gj{x)) for all j = 1,2,..., m, and finaUy 

K2{x) = -2y(x)(sign{6l(x)},sign{62(x)},...,sign{6„^(x)})^, 

where gj is the jth column of G, and where sign{s} = 1, -1,0 if s > 0, < 0, = 0 respectively. 
The proof then shows that K .^ Ki + K2 is so that x{t) = F{x{t), K{x{t) + e{t)), u{t)) is ISS 
for sampling solutions. An analogous result holds for Euler solutions. 
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Minimum-Phase Properties 
Another recent area of research dealt with notions associated to the minimum-phase prop- 

erty; we next describe this work, done in collaboration with Liberzon and Morse, of. [s50]. Recall 
that a continuous-time linear single-input/single-output (SISO) system is said to be minimum- 
phase if the numerator polynomial of its transfer function has all its zeros in the open left half 
plane. If a linear system of relative degree r is minimum-phase, then the "inverse" system, 
driven by the r-th derivative of the output of the original system, is stable. (For left-invertible, 
multi-input/multi-output (MIMO) systems, in place of the zeros of the numerator one appeals 
to the so-called transmission zeros.) The notion of a minimum-phase system is of great sig- 
nificance in many areas of linear system analysis and design. In particular, it has played an 
important role in parameter adaptive control. A basic example is provided by the "certainty 
equivalence output stabilization theorem", which says that when a certainty equivalence, out- 
put stabilizing adaptive controller is apphed to a minimum-phase linear system, the closed-loop 
system is detectable through the tuning error. In essence, this result serves as a justification 
for the certainty equivalence approach to adaptive control of minimum-phase linear systems. 

For nonhnear systems that are affine in controls, a major contribution of Byrnes and Isidori 
was to define the minimiun-phase property in terms of the new concept of zero dynamics. The 
zero dynamics are the internal dynamics of the system under the action of an input that holds 
the output constantly at zero. The system is called minimum-phase if the zero dynamics are 
(globally) asymptotically stable. In the SISO case, a unique input capable of producing the 
zero output is guaranteed to exist if the system has a uniform relative degree, which is now 
defined to be the number of times one has to differentiate the output until the input appears. 
(Extensions to MIMO systems are discussed in Isidori's book as well.) In view of the need to 
work with the zero dynamics, this definition of a minimuin-phase nonlinear system prompts 
one to look for a change of coordinates that transforms the system into a certain normal form. 
It has also been recognized that just asymptotic stability of the zero dynamics is sometimes 
insufficient for control design purposes, so that additional requirements need to be placed on the 
internal dynamics of the system. One such common requirement is that the internal dynamics 
be ISS with respect to the output and its derivatives up to order r - 1, where r is the relative 
degree. Thus, it is of interest to develop alternative (and possibly stronger) concepts which can 
be applied when asymptotic stability of zero dynamics is difficult to verify or inadequate. 

In the paper [s50], we introduced the notion of output-input stability (OIS), which does 
not rely on zero dynamics or normal forms. Loosely speaking, a system is OIS if its state 
and input eventually become small when the output and derivatives of the output are small. 
The class of OIS systems includes all left-invertible linear systems whose transmission zeros 
have negative real parts and all affine systems in global normal form with input-to-state stable 
internal dynamics. Conceptually, the new notion relates to the existing concept of a minimum- 
phase nonlinear system in much the same way as input-to-state stability (ISS) relates to global 
asymptotic stability under zero inputs (0-GAS), modulo the duality between inputs and outputs. 
An important outcome of this parallelism is that the tools that have been developed for studying 
ISS and related concepts can be employed to study output-input stability. If a system has a 
uniform relative degree (in an appropriate sense) and is detectable through the output and its 
derivatives up to some order, uniformly over all inputs that produce a given output, then it 
is output-input stable. For SISO systems that are real analytic in controls, we also showed 
that the converse is true, thus arriving at a useful equivalent characterization of output-input 
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stability. For general OIS systems in our sense, we show in the paper that stabilizing the output 
and its derivatives results in internal stability, as one should expect of a notion of minimum 
phase systems. We also established a natural nonUnear counterpart of the certainty equivalence 
output stabilization theorem from linear adaptive control, an intuitively appealing result that 
did not seem to be attainable within the boundaries of the existing theory of minimum-phase 
nonUnear systems. Let us provide a few technical details. (We restrict to the single-input 
single-output case; the vector case is similar but slightly more complicated technically.) 

A smooth system x = f{x, u), y = h{x), is defined to be OIS if there exist a positive integer 
N, a class ICC function /3, and a class ICoo function 7 such that for every initial state a;(0) and 
every N -1 times continuously differentiable input u the inequaHty 

\u{t)\ + \x{t)\ < 0{\x{O)\,t) + j{\\y''\\io,t]) 

holds for all t in the domain of the definition of the solution, where "j/^" lists y as well as its 
first N derivatives, and we are taking supremum norms as usual. 

For each nonnegative integer k, restricting the input u to be of class C'^~\ we can con- 
sider the k-output extension of the system, x = fix,u), y*= = /ifc(a;,u,... ,ti('=~^)) where 
/ifc(i,?i,...,u('=-i)) := (iIo(a;);i?i(a;,u);...;iTfc(a;,u,...,u('=-i))) is the new output map. (For 
fc = 0,1,... define, recursively, the functions ifjt : E" x R'= -* M by the formulas Ho := h and 
Hk+iix, uo,..., Uk) := ^fix, uo) + EJ^O ^"J+1- These give the derivatives of the output: 
if the input u{-) is in C*'~^ then along each solution x{-) the corresponding output has a con- 
tinuous fc-th derivative satisfying y^''\t) = Hk{x{t),u{t), ...,u('=-^)(*))•) In other words, we 
redefine the output of the system to be y''. We say that the original system is weakly OSS of 
order k if its fe-output extension is OSS, and weakly uniformly OSS of order k if its A;-output 
extension is uniformly OSS, in the by now standard sense of OSS as a special case of lOSS, and 
imiformity understood with respect to all inputs, or equivalently in a differential inclusion sense. 
We say that a positive integer r is the (uniform) relative degree of the system if the following 
two conditions hold: (1) for each k < r, the function Hk is independent of UQ, ..., wjt-i, and 
(2) there exist two class /Coo functions pi and p2 such that |uo| < pii\x\) + p2{\Hr{x,uo)\) for 
all a; e R" and all UQ e R. (If there exists such an integer r, then it is imique.) A system is 
defined to be strongly minimum-phase if it has a relative degree r and is weakly uniformly OSS 
of order r — 1 

It is shown in [s50] that: (1) given any system with relative degree r and weakly uniformly 
OSS of order k, for some k, the system is OIS, with N = max{r,A;}; (2) conversely, if the 
system is OIS, then it is weakly uniformly OSS order N, and if in addition the function f{x, •) 
is real analytic in u for each fixed x, /(0,0) = 0 and /i(0) = 0, then it has a relative degree 
r < N. Thus, for systems with relative degree, OIS is equivalent to weak imiform OSS of order 
k for some k < N, and under the additional assumptions on / and h, OIS is equivalent to the 
existence of a relative degree r < N plus weak uniform OSS of order k for some k < N. 

2.2    Some Details: Systems/Control Problems Inspired by Molecular Biology 

We describe next some control and systems problems motivated by molecular biology. 
Monotone Systems and Cauchy Gains 

In [s31], we consider systems that evolve in state spaces X which are subsets of Euclidean 
space K" with an order >- induced by a closed convex cone K. Similarly, the input-value set U 
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and output-value set y are subsets of ordered Euclidean spaces, with orders induced by cones 
X" and K^, but we use the same symbol (>:) to denote any of the orders. We say that a system 
X = f{x,u), y = h{x) is monotone provided that h : X ^ y is a monotone map and that the 
flow preserves order, i.e. the implication below holds for all < > 0: 

uiyu2,xiyx2     =>     </>(*, a;i, Ml) h ^(t,a;2,«2) 

where ui h U2 mans that ui{t) y U2{t) for all t and where <j){t,^,u) is the state at time t 
obtained if the initial state is ^ and the external input is u{-). The map / is defined on X xU, 
where X is some open subset of R" which contains X, and f{x, u) is continuous in (re, u) and 
locally Lipschitz continuous in x locally uniformly on u. Moreover, we assume that solutions 
with initial states in X are defined for alH > 0 (forward completeness) and that the set X is 
forward invariant. For simpUcity in this discussion, we will assume that the sets X and U are 
convex, and that the order cones all have nonempty interiors, although far less is needed for 
the results to be quoted to hold, see [s31]. Recall that the Bouligand (or "contingent") tangent 
cone to a set <S at a point ^ is the set 

T^S := ( lim i iCi - 0 ^i ->^,ti\o] 
I 1->CX3 ti S ) 

where "^i->^" means that ^j -^ ^ as i ^ oo and that ^i e S for all i. The following is an 

infinitesimal characterization of monotonicity, expressed directly in terms of the vector field, 
which does not require the expHcit computation of solutions: A system is monotone if and only 

if, for all ^1,^2: 

6 h 6 and uit:U2 =^ /(6."i) - /(6) '"2) ^"^(1-^2^ 

(or, equivalents, 6 - 6 e dK and m h U2 ^ /(a,"i) - /(6, "2) G T^i-^^K). A paxticular 
case is when K = R^Q and K^ = R% (with U = R""). Such systems are called cooperative 
systems. Assuming that / is continuously diflferentiable, cooperativity if equivalent to the 

two properties §^{x,u) > 0 for all i 7^ j and ^ix,u) > 0 for all i,j, holding for all x,u. 
More general orthants must be considered, however, in order to study applications like MAPK 
cascades, discussed earlier. For such more general orthants, similar characterizations are given 
in [s31] in [s3], together with simple graph-theoretic tests. Cascades 

ii     =    fl{xi,X2,...,XN,u) 
X2     =     f2{x2,....,XN,u) 

Xi     =     fi{Xi,...,XN,U) 

XN   =   fnixN, u) 

of monotone systems are again monotone (with respect to the obvious orders), which makes 
the notion particularly suitable for decomposition approaches to systems analysis and control 
design. 

A notion of "Cauchy gain" was introduced in [s61] in order to quantify the amphfication 
of signals by systems in a manner useful for biological applications. For monotone dynamical 
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systems satisfying an additional property, it is possible to obtain tight estimates of Cauchy 
gains. This is achieved by showing that the output values y{t) corresponding to an input u{-) 
axe always "sandwiched" in between the outputs corresponding to two constant inputs which 
bound the range of u{-). This additional property motivated our looking at monotone systems 
to start with. We say that a system has a well-defined static Input/State (I/S) characteristic 

if for each constant input u{t) = u there exists a (necessarily unique) globally asymptoti- 
cally stable equilibrium kx{u). We say that the characteristic is nondegenerate if the Jacobian 
Dxfikx{u),u) is nonsingular, for all u. If a characteristic exists, we also define the static In- 
put/Output (I/O) characteristic as ky{u) := h{kx{u)). Cascades of systems with well-defined 
I/O characteristics also have well-defined I/O characteristics. 

The key technical property for monotone systems with well-defined characteristics is as 
follows (there is also a multivariable version, but we provide only the scalar statement here): 
Suppose that a monotone single-input single-output ("SISO") system has a static I/O char- 
acteristic ky{-). Then, for each initial condition ^ and each bounded input u{-), the following 

holds: 
kyiuinf) < liminf y(i,C,w) < limsupy{t,^,u) < fcy(usup) • 

" t-»+oo t-»+oo 

(If, instead, outputs are ordered by >, then the inequalities get reversed.) The Cauchy gain, in 
the sense of [s61], can be estimated from this result. For any signal w defined on [0, -t-oo) and 
taking values in a Banach space, we defined in [s61] its "asymptotic amplitude" as follows: 

llwllaa := limsup||a;(t) - u;(s)|| € [0,oo]. 

This measures how "non-Cauchy" a function is, since ||a;||aa = 0 if and only if limt_>oo w(*) exists. 
In these terms, we defined a system as having a Cauchy gain j e K-oo i^ ||j/|laa ^ 7(ll"llaa) ^^r 
all input/output pairs u,y. 

A small-gain theorem for monotone systems is as follows. Consider the following intercon- 
nection of two SISO dynamical systems 

X   =   fx{x,w),    y = hx{x) 

z   =   fz{z,y),     w = hz{z) 

with Ux = yz and Uz = yx- Suppose that: (1) the first system is monotone when its input 
w as well as output y are ordered according to the "standard order" induced by the positive 
real semi-axis; (2) the second system is monotone when its input y is ordered according to 
the standard order induced by the positive real semi-axis and its output w is ordered by the 
opposite order (i.e., the one induced by the negative real semi-axis); (3) the respective static 
I/S characteristics kx{-) and fc^(-) exist (thus, the static I/O characteristics fcy(-) and fc^(-) 
exist too and are respectively monotonically increasing and monotonically decreasing); (4) 
every solution of the closed-loop system is bounded; and (5) the scalar discrete time dynamical 
system, evolving in Ux' 

Uk+i = {kw o ky) (uk) 

has a unique globally attractive equilibrium u. Then, the closed-loop system has a globally 
attractive equilibrium. 
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This small-gain result allows testing stability of systems of high dimension, under negative 
feedback, by restricting analysis to a one-dimensional discrete-time system. As a concrete 
illustration, let us consider the following open-loop system: 

XI = 

yi = 

h = 

z\ = 

h = 

U2(100-xi) gixi   92+ u 

k2 + (100 - xi)     ki + xig4 + u 

ve (300 -yi- ys)       KS (100 - xi) yi 

ke + (300 - yi - ys) ka + yi 

^4(100-xi)(300-yi-y3) 
ki + (300 - yi - ys) 

t)io (300 - zi- zs)   _ K7 ya zi 

kio + (300 - 21 - za)     kr + zi 

K8 ya (300 - zi- Z3)       V9Z3 

ks + (300 -zi- Z3)     kg + zz 

K4(100-xi)(300-yi-y3) _   VbVz Q5^ 

ki + (300 - yi - ys) fcs + 2/3 

This is the model studied by Kholodenko, for MAPK cascades, from which we also borrow 
the values of constants (with a couple of exceptions, see below): pi = 0.22, 52 = 45, ^4 = 50, 
jfci = 10, V2 = 0.25, fc2 = 8, K3 = 0.025, fca = 15, M = 0.025 k^ = 15, V5 = 0.75, ^5 = 15, 
^6 = 0.75, ke = 15, K7 = 0.025, fcy = 15, KS = 0.025, /cg = 15, % = 0.5, fcg = 15, vio = 0.5, 
fcio = 15. Units are as follows: concentrations and Michaelis constants (fc's) are expressed in nM, 
catalytic rate constants (K'S) in s~\ and maximal enzyme rates (t;'s) in nM-s'"^. Kholodenko 
showed that oscillations may arise in this system for appropriate values of negative feedback 
gains. (We have slightly changed the input term, using coefficients ffi, 52, 54, because we wish 
to emphasize the open-loop system before considering the effect of negative feedback.) 

To apply our small-gain theorem, we must verify that the system is monotone and has 
a well-defined I/S characteristic. As a cascade of a three systems, of dimensions 1, 2, and 2 
respectively (the x, y, and z subsystems) it is enough to show these properties for each individual 
subsystem. The x subsystem is of dimension one and easy to study, so we concentrate on the 
y and z subsystems. Each of this has the following generic form: 

ii = -u0i(xi) -t- 02(a -x^-x^)\_   , I    2 ^^ 
±2 = u03(a -x'- x^) - e4(x2)     j-n^,^,^') 

for an appropriate constant a (where the functions Si's have the form j^^), and evolving 

on the triangle X = {[x^,x^] : x^ > 0, x^ > 0,x^ + x^ < a}. The paper [s31] shows that 
a system of this form is monotone with respect to a suitable orthant order, and that unique 
global asymptotically stable equilibria exist for each constant input u. Since the complete 
system is a cascade of such elementary subsystems, we know that our small-gain result may 
be applied. Figure 1 shows the I/O characteristic of this system, as well as the characteristic 
corresponding to a feedback u= ^, with the gain K = 30000. It is evident from this planar 
plot that the small-gain condition is satisfied - a "spiderweb" diagram shows convergence. Our 
theorem then guarantees global attraction to a unique equilibrium. Indeed, Figure 2 shows 
a typical state trajectory. A somewhat different small-gain theorem, based only on Cauchy 
gains and not monotonicity, was proved in [s61], and apphed in particular to the model of 
MAPK cascades under negative feedback with parameters given in Shvartsman's work. In that 
reference, a bifurcation analysis is performed with respect to the feedback gain fc as a parameter. 
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Figure 1: I/O characteristic and small-gain illustration for MAPK example 

Figure 2: Simulation of MAPK system under negative feedback satisfying small-gain conditions. 
Key: xi dots, X2 dashes, X3 dash-dot, X4 circles, X5 solid 

Numerically, it is found that oscillations result when this parameter attains the value k = 5.2. 
The Cauchy gain approach shows that stability remains imtil at least k = 3.92, which is a 
very tight estimate. Keeping in mind that our results are vaHd even under arbitrary delays on 
feedback loops, this is quite remarkable. 
Robust Stability and Observers for Chemical Networks 

Designers strive to engineer as much robustness as possible into control systems. However, 
few systems perform acceptably under truly large variations in parameters. In biology, in 
contrast, there is often a very large variability in intracellular concentrations of chemicals, due 
to, for instance, imequal division among daughter cells during mitosis, gene dupUcations, or 
mutations. If functions critical to the survival of the organism are not affected, this means that 
evolution must have selected for appropriately robust structures. Thus, the study of biological 
models might provide a guide to novel robust structiures for engineering applications. 

The paper [s66], motivated originally by a model in immunology, represents another direc- 
tion of recent research by the PI. It led to the study of classes of systems for which stability 
is robust independently of numerical values of parameters. The class of systems studied there 
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can be defined mathematically as consisting of systems of the following form: 

mm 
i = /(x) = X: £ aij x^^x^ ... x^ {bi - bj) (16) 

1=1 j=i 

where the constants aij are all > 0, and the matrix A = [atj] is irreducible (a block irreducibility 
assumption is sufficient for most of the results). The number m can be thought of as the number 
of reactions in a chemical system, and is < n, the dimension of the system (number of "species" 
participating in the reactions). The column vectors bj e M" have entries bij,b2j, ■..,bnj, which 
are nonnegative integers, and the matrix B := [6i, 62,..., 6^] has rank m, and none of its rows 
vanishes. This is viewed as a system evolving on the positive orthant E!J (which is easily seen 
to be forward invariant for the dynamics). The space V := span{6i -bj : i,j = 1,.. .,m} is the 
stoichiometric subspace. Its translates are invariant under the motions (since T] • {bi-bj) = 0 
imphes T] -x^t) = 0 for any vector TJ). 

This type of system represents the "zero deficiency and weakly reversible" chemical networks 
studied by Feinberg, Horn, and Jackson in the 1970s. In their language, we are dealing with ideal 
mass-action kinetics, weakly reversible networks, with deficiency zero. (The latter constraint 
means that m-i-d = 0, where d is the dimension of the stoichiometric subspace and £ is the 
number of linkage classes, i.e., the number of connected components in the reaction graph. The 
irreducibility assumption corresponds to setting ^ = 1 for simplicity.) We assume, in addition, 
that there are no boundary equilibria on positive classes, that is, if a parallel translate p + V 
of V is such that it intersects the strictly positive main orthant, then there are no equilibria in 
the intersection oip + V and the boundary of the positive main orthant. This is a condition 
that is satisfied in most examples that we have encountered so far, and it is key in allowing us 
to obtain global stability statements in our work. As an illustration, the kinetic proofreading 
system studied by McKeithan is of this form. This system is described by the reactions shown 
in Figure 3. The variables are T{t), the concentration of T-cell receptor (TCR) and M{t), the 

ki kio fell kii-i kii kiN 
T+M ,   t. „'Co 

Figiu-e 3: Kinetic Proofreading Reaction According to McKeithan 

concentration of peptide-major histocompatibility complex (MHC), as well as concentrations of 
initial ligand-receptor and intermediate complexes Co(t) and Ci(t),... ,Cjv(0- The constants 
are fci, the association rate for the reaction producing the initial ligand-receptor complex Co 
from TCR/MHC, other reaction rates ki^i (phosphorylation,etc.), and dissociation rates fc_i,i. 
This system is interesting even for the relatively trivial case N = 0: writing Xi{t), i = 1,2,3 for 
the concentrations of T, M, Co respectively, we arrive to the equations: 

xi   —   -k^xiX2 + k_xs 

±2   =   -k_^xiX2 + k_xz 

Xz     =     k^XiX2 — k_X3. 

where we wrote k^,k_ instead of fci, fc_io respectively. In the general formalism shown above, 
these equations would be obtained as follows. The complexes T + M and CQ give rise to the 
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vectors bi and 62 respectively, which Hst the species entering in the complex (first and second 
in first complex, third in the second complex), and the matrix A indicates the graph of the 
reaction: 

(j)-^»"'^=(;)'^=G! *„). T + M *-^bi 

We then have that 

fixi,X2,X3) = ia2ix'"ib2-bi)+aux'^{bi-b2) = k^xjxlx^^    -1 j +A;_x$x^a;J (   ^   I ' 

McKeithan postulated that the immune recognition signal is determined by the steady states 
of this system, and showed that steady states are unique, under the simplifying assumption 
that all constants are the same: fci,i = h, fc_i,i = A;_i. This motivated the PI to ask several 
basic theoretical questions, dealing with the structure of the set of steady states, in general, and 
the analysis of stability (are there periodic orbits, as in other chemical examples like Belousov- 
Zhabotinsky reactions? what about possible chaotic behavior?). Among the results shown 
in [s66], not just for the system above but also for any system (16) of the general type being 
considered, are the fact that the set E of equilibria is an embedded submanifold, and the state 
space is foliated into invariant sets (stoichiometry classes) which are transversal to the manifold 
E; moreover, positive steady states are unique in each leaf (stoichiometry class), all trajectories 
converge to the set of equilibria, and, moreover, there is global asymptotic stability, relative to 
each leaf, of the positive steady state. The original papers of Feinberg et. al. provided many 
of the basic techniques needed in order to develop the theory, but substantial additional effort 
was needed in order to prove the global statements. In addition, the paper [s66] provided 
estimates of robustness to immodeled dynamics, and gave extensions to some non-ideal mass 
action kinetics, and also gave solutions to a stabilization problem (using iirflows and outflows). 

Suppose now that we include a measurement function ^ : M" -> M^ into the specification 
of the system. Specifically, we will assume that the output coordinates are monomials, i.e. 
h{x) = col (x5"x^^' • • • x^i",..., x^'x^'... xS"") where the p x n matrix of exponents C = (cij) 
has all its entries nonnegative integers. (This choice of output functions allows one to include 
reaction rates as well as measurements of single concentrations.) As usual, we define an observer 
for any system x = /(x), y = h{x) to be another system z = g{z, y), x = h{z) which estimates 
internal states (in this case, chemical concentrations). That is, we assume that for all initial 
conditions x(0),2:(0) of the composite system, solutions are well-defined for all t > 0, and 
|x(i) - x(i)| -» 0 as t -> +00. Even though we are dealing with potentially highly nonlinear 
systems, in our work with Madalena Chaves cf. [s54] and [s71], we gave necessary and sufficient 
conditions for detectability, and an exphcit construction of globally convergent observers. The 
observer has the following very simple form: 

z = f{z) + C'{y-hiz))       {x = z) 

which, of course, resembles a Luenberger observer (or "deterministic Kalman filter") — but 
which has the transpose of C as a particular gain matrix. (Interestingly, other observers, for 
instance using gains based on linearized systems or on extended Kalman filters, can be shown 
by counterexample to not always result in global convergence, for these same systems.) The 
proof is based on showing that the system with inputs z — f{z)+C'{u-h{z)) is ISS, relative not 
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to "z = 0 and u = 0" but to suitable equilibria; this is, in turn, done by using an entropy-like 
ISS-Lyapunov function. As a bonus, one obtains an automatic robustness to observation noise, 
expressed in ISS-like terms. This is one of the few instances where one can obtain globally 
convergent observers for a nontrivial class of nonlinear systems (not Hnearizable by output 
injection). It remains to see if such observers are useful in interesting engineering applications, 
but we did perform experiments (described in Chaves' recently completed Ph.D. thesis under 
the P.I.'s direction) vahdating the use of these observers in some simple chemical reactions. 
(We used NMR data to actually measure all concentrations, thus providing a cross-check for 
the estimates.) In [s69], we introduced a variant, based on log-barrier functions, that trades 
slower observer convergence for a larger margin of robustness. 

Internal Model Principle 
As discussed earlier, in [s41] we provided an internal model theorem (in the sense of proving 

necessity of internal models) which is suitable for appHcations in which the goal is adaptation 
(disturbance rejection) with signal detection. Let us give some details now. We dealt with 
single-input single-output systems E, aihne in inputs: x{t) = fix{t)) + u{t)g{x{t)), y{t) = 
h{x{t)) with / and g smooth vector fields and h a scalar smooth function, satisfying /(O) = 
/i(0) = 0. Given a class U of functions [0, oo) -> K (such as for example the set of all constant 
functions), we say that E adapts to inputs in U (a more appropriate technical control-theoretic 
term would be "asymptotically rejects disturbances in U") if the following property holds: for 
each u e U and each initial state, the solution exists for alH > 0 and is bounded, and the 
corresponding output y{t) = h{x{t)) converges to zero as i —> oo. We say that E contains an 
output-driven internal model ofU if there is a change of coordinates which brings the system 
into the following block form: 

zi   =   /i (^1, Z2) + ugi (zi, Z2) 
Z2   =   h{y,Z2) 
y   =   K.{zi) 

(the subsystems with variables zi and 22 correspond respectively to EQ and EJM in Figure 4), 
and in addition the subsystem with state variables Z2 is capable of generating all functions 

u{-)&U ►  yit)^o 

Figure 4: Decomposition of E into EQ and EIM, the Latter Driven by y{t) 

in U, meaning the following property: there is some scalar function ip{z2) so that, for each 
possible u EU, there is some solution of Z2 — /2(0, ^2) which satisfies ip{z2{t)) = u{t). The 
precise meaning of "change of coordinates" is as follows. There must exist an integer r < n, 
differentiable manifolds Zi and Z2 of dimensions r and n - r respectively, a smooth function 
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'51(^1.^2) 
0 

K : Zi -> R, vector fields F and G on Zi x Z2 which take the partitioned form 

and a diffeomorphism $ : E" -> Zi x Z2, such that 

$,(x)/(x) = F($(x)),    $*(2;)g(a;) = G($(x)),    K($I(X)) = M^^) 

for all X G E", where $1 is the Zi-component of $ and star indicates Jacobian. Our result 
holds under additional conditions on the vector fields defining the system. The first condition 
is the fundamental one from an intuitive point of view, namely that the system is able to detect 
changes in the input signal: Assumption 1: a uniform relative degree exists. This means that 
there exists some positive integer r such that Lglfjh = OVfc < r - 1 and LgVf h{x) ^ OVx G 
E" where Lxh is the Lie derivative of a function h along the direction of the vector field X. 
(The integer r is the relative degree of S; the Eissumption amounts to the statement that the 
output derivatives y^''\t) must be independent of the value of the input at time t, for all fc < r, 
but that y^'^\t) = h(x{t)) + a{x{t))u{t) for some function a{x) which is everywhere nonzero.) 
The next two conditions are of a technical nature. They are automatically satisfied for linear 
systems. For nonhnear systems, we need such conditions in order to guarantee the existence 
of a change of variables exhibiting the system SIM- (See the paper for ways of weakening 
these assumptions.) Assuming that the degree is r, we introduce the following vector fields: 
9{x) = z^frkj^^gix), m = fix) - (L)h{x))g{x), n := sd^^i = l,...r, where adx is 
the operator adx^ = [X,Y] = (Lie bracket). The assumptions are then: Assumption 2: n is 
complete, for i = 1,..., r, and Assumption 3: the vector fields n commute with each other. 
Finally, we must define the allowed classes of inputs U. As usual in control theory, we assumed 
that inputs are generated by exosystems. That is, there is given a system T: w = Q{w), u = 6{w) 
evolving on some differentiate manifold, Q a smooth vector field, and 0 a real-valued smooth 
function such that the input class U consists exactly of those inputs u{t) = 6{w{t)), t>0, for 
all possible solutions oi w = Q{w). (For example, if we are interested in constant signals, we 
pick w = 0,u = w and if we are interested in sinusoidals with frequency a; then we use xi = X2, 
X2 = -w^xi, u = xi.) We assumed that the exosystem is Poisson-stable. This means that the 
exosystem is ahnost-periodic in the sense that trajectories keep returning to neighborhoods of 
the initial state. We then proved that, if Assumptions 1-3 hold and the system S adapts to 
inputs in a class U generated by a Poisson-stable exosystem, then S contains an output-driven 
internal model of U. 
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